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Abstract—With the rapid development of medical 
technology and the effects of aging, the issues related to 
medical care and long-term care have become extremely 
important. Among much physiological information, blood 
pressure is one of the important factors, while traditional 
medical instruments for blood pressure measurements are 
usually not portable. In this paper, the developed multi-
wavelength PPG (MW-PPG) measurement module is used to 
collect multi-wavelength PPG signals. Three light sources 
with spectra range in red, green and infrared-red are used to 
collect15 MW-PPG signals. A Signal-to-Noise Ratio based 
(SNR-based) selected combining algorithm is proposed to 
select the PPG signal with the best signal quality. The 
selected MW-PPG signals with the corresponding neural 
network model are used for blood pressure prediction. 

In this paper, we show that based on the proposed SNR-
selected combining algorithm to select the PPG wavelength 
for blood pressure measurement on different objects, 
compared to using the green PPG signal, averagely 5% MAE 
can be reduced in diastolic and systolic blood pressure 
measurement. Further, a clinical trial was conducted on 10 
subjects. The results of the clinical trial show that the SNR-
based selected combining algorithm could reduce the 
prediction error by up to 12% compared to the single 
wavelength PPG sensing methodology. 

 
Index Terms— blood pressure prediction, multi-

wavelength PPG technique, machine learning, transfer 
learning.  

I. INTRODUCTION 

HANKS to the rapid development of embedded 

systems, big data analysis, and artificial intelligence in 

recent years, modern medicine is gradually moving 

towards to precision medicine. Various physiological signals 

such as heart rate, blood pressure, and blood sugar are 
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continuously monitored through the wearable devices and 

collected into a huge database in order to build a medical big 

data system. Further, by using of the artificial intelligence and 

machine learning algorithms, the prediction model can be 

trained and it can be assumed as the beginning of preventive 

healthcare. In response to the recent COVID-19 outbreak, the 

healthcare metrics measured from the personalized smart 

wearable devices are considered as the indicators of COVID-

19 infection and assessment. Since the COVID-19 virus 

affects the sensitivity of the nervous system to oxygen, the 

brain is unable to detect hypoxia in real-time, resulting in 

invisible hypoxia (Happy hypoxia) [1], causing  medical 

treatment  to be delayed and the golden period of treatment to 

be missed. The wearable device can monitor patients' blood 

oxygen levels in real-time and provide appropriate medical 

measures to reduce the mortality caused by COVID-19. 

Photoplethysmography (PPG) has been widely used in 

wearable devices as a convenient method for heart rhythm and 

blood oxygen measurement. In recent years, the 

miniaturization of electronic components and the rapid 

development of PPG sensing modules have significantly 

contributed to the development of PPG applications for blood 

pressure measurement. Traditionally, many studies have 

pointed out that the distance between the PPG sensing signal 

and the peak of the ECG can be assumed as the pulse transit 

time (PTT). Since the PTT has a linear relationship with blood 

pressure, it is believed that the PTT can further infer the blood 

pressure value. However, the number of features is too small 

and the measurement needs to be used in conjunction with a 

large ECG measurement device, which hinders the accuracy 

of blood pressure prediction and makes it inconvenient to 

carry around to achieve portable monitoring. In 2005, Nitzan 
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et al [2] show that the PPG signals from different body parts 

are captured and the time difference between the peaks of the 

PPG signals can be used as the  PTT to predict blood pressure. 

However, the sensor must be carried on different body parts, 

which makes it inconvenient to carry. After 2009, many 

researchers [3][4] started to study the extraction of multiple 

features by single wavelength PPG signals for blood pressure 

measurement, and the amount of feature extraction has been 

gradually increased from 4 to 21, and the error has reached 

less than 4%, which innovates PPG application for blood 

pressure measurement. 

However, many studies have pointed out that the captured 

PPG sensing signals is susceptible to environmental variables 

such as skin surface relaxation [5], skin color [6], skin surface 

temperature [7], etc. To obtain stable signal quality, MW-PPG  

sensing technology has been gradually gaining attention in 

recent years. Since PPG signals of different wavelengths can 

penetrate different skin depths [8]-[11], Zhang et al [12] pointed 

out in 2019 that short-wavelength PPG signals have a higher 

Signal to Motion Artifacts Ratio (SMR) compared to long-

wavelength PPG signals. Therefore, the short wavelength PPG 

signal can be used as the main signal, while the long wavelength 

PPG signal is more sensitive to dynamic noise, so the dynamic 

noise can be extracted by spectrum analysis and subtracted from 

the main signal to eliminate the dynamic noise to obtain a more 

stable PPG signal. Chang et al [13] also used a micro 

spectrometer sensor chip to build an MW-PPG measurement 

device in 2019. The developed signal processing algorithm can 

extract robust heart rhythm and blood oxygen detection values, 

and further, validate the feasibility of MW-PPG for blood 

pressure sensing. In 2020 [14], they further validated that PPG 

signals of different wavelengths in different postures can 

provide different signal-to-noise ratios (SNR), and the signal 

combining algorithm allows the wearer to merge PPG signals 

with high SNR from MW-PPG sensors in different postures. On 

average, the PPG signal has a 28% higher SNR than 

conventional single wavelength PPG signals in different 

postures. 

The MW-PPG measurement module which had been 

established in our past studies [13] was continually adopted in 

this paper to collect MW-PPG signals and explore the selection 

of PPG signal bands for different subjects by selected 

combining algorithm to achieve blood pressure measurement 

via neural network. In terms of neural network training in this 

paper, the transfer learning algorithm is used due to the 

difficulty of medical data is collection. Based on the transfer 

learning, the experience, knowledge, and features learned from 

the neural network trained by the source dataset can be 

transferred to the model for the target dataset. In our study, the 

publicly available MW-PPG signals database, MIMIC-III 

Waveform Database, is used as the source dataset to train the 

neural network model in advance and then transferred to the 

model for target dataset which is collected by the developed 

MW-PPG measurement module. 

II.BACKGROUND KNOWLEDGE 

Section 2.1 introduce the the module architecture and principles 

of the developed MW-PPG measurement module introduces, 

Section 2.2 introduces various feature extraction methods for blood 

pressure prediction, and Section 2.3 introduce the neural networks 

and transfer learning development in the AI field.  

A. Micro MW-PPG Measurement Module 

The MW-PPG measurement module used in this paper is 

shown in Figure 1(a). The light sources are arranged 

symmetrically, and the MW-PPG sensor is placed in the middle, 

so that the light sources of different wavelengths can be 

reflected by the skin and gathered at the center to facilitate the 

collection of MW-PPG sensors. Three sets of LEDs are used for 

the light source, which are green light (wavelength 515 nm), red 

light (wavelength 660 nm), and infrared light (wavelength 940 

nm), and the spectra of the three light sources are shown in 

Figure 1(b). The nanoLambda micro spectrometer is used as the 

receiver side sensor for MW-PPG signal detection. Compared 

with conventional spectrometers, which are often several 

square centimeters, this sensor only occupies a few square 

microns. Since it does not use precision optical components 

such as grating and focal lens, it is small and light in use and 

can collect 15 wavelengths of PPG signals including 505nm, 

510nm, 515nm, 520nm, 525nm, 620nm, 625nm, 630nm, 

635nm, 640nm, 930nm, 935nm, 940nm, 945nm, and 950nm at 

the same time. Also, compared to conventional Photo-diodes 

(PDs) that obtain PPG signals of different wavelengths by time-

sharing and multiplexing through SWITCH, and then 

recombine these fragmented signals into multi-wavelength PPG 

signals, the MW-PPG measurement module used in this paper 

can simultaneously resolve PPG signals of multiple 

wavelengths, and the signals do not need to go through the 

recombination process, such that we can have true real-time 

MW-PPG signals. According to a previous study [13], this 

measurement module can achieve the advantage of 

simultaneous and robust measurement compared with the 

conventional PD. 

 
(a) NSP32 multi-wavelength PPG measurement module 

 

 
(b) The spectra of the three light sources 

Fig. 1. Pictorial and used spectra of the light source in the MW-PPG 

measurement module 
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The mathematical model of the MW-PPG sensing device in 

this study is shown in Figure 2. The PPG sensor signal at each 

wavelength captured by the micro MW-PPG sensor can be 

expressed as 

                               
T

t t t t= +y Fx n ,                    (1) 

 

where 𝒚𝑡 = [𝑦1,𝑡 𝑦2,𝑡 ,©, 𝑦𝐿,𝑡], and 𝑦𝑖,𝑡 , 𝑖©. . . , 𝐿 is the 

PPG sensing signal collected at time t for the i-th 

wavelength,𝑭 = [𝒇1
𝑇 © , . . . , 𝒇𝐿

𝑇] , where , 1,...,T

i i L=f  is 

the response curve of the i-th sensing wavelength. In this study, 

we assume that the response curve of a sensing wavelength is 

an approximately perfect Gaussian curve, tx  is the reflected 

spectrum received by the sensor, and tn  is the noise 

component of the received signal. 

From [15], the PPG sensing signal at each wavelength can be 

divided into the signal x  (freq.<7 Hz) and noise n   (freq.>7 

Hz) components. The signal component is used for the feature 

extraction and model training, and the signal and noise 

components are used to calculate the SNR values, which are 

used to evaluate the signal selection at each wavelength. 

t t ty = s + n ,                                 (2) 

 

 
Fig. 2. Mathematical model of MW-PPG sensing device 

 

B. PPG Blood Pressure Feature Extraction 

The association between PPG signals and blood pressure has 

been studied in the past, and PPG signals can record the 

pulsatile changes in blood flow in subcutaneous vessels during 

each heartbeats. The changes in the waveform would be related 

to cardiac blood transfusion, vessel shape, and vessel wall 

condition. Therefore, many studies have been conducted to 

predict blood pressure by means of analyzing the features of the 

PPG waveform in various ways. 

In the frequency domain, Xing et al [16] used the data in 

MIMIC II to extract the amplitude and phase in the waveform 

by FFT transformation. They concluded that this method is 

more stable than extracting features from the time domain 

because there is no need to capture the location of particular 

time points, and multiple periodic pulse signals can be analyzed 

at one time. Subsequently, the Levenberg-Marquardt algorithm 

in ANN was used to train the amplitude and phase as features, 

and the final predicted results were -1.67 ± 2.46 mmHg for SBP 

and -1.29 ± 1.71 mmHg for DBP. 

In the time domain, as shown in figure 3, Suzuki et al [3] 

calculated the turning points on a single PPG waveform by 

quadratic differentiation and recorded the four main turning 

points PW, TW, Dn, and DW on the PPG waveform as 

characteristic parameters and predicted the SBP values by the 

Error-Correcting Output Codes (ECOC) method. The predicted 

results were r=0.75, MD=-1.2 [mmHg], and SD=11.7 [mmHg]. 

In addition, Kurylyak et al [4] concluded that the feature point 

of the PPG waveform is the time difference between peak and 

trough in a single pulse, and the time difference at each pulse 

height is considered as the variation of blood flow with the 

pulsation of the heart, and based on the characteristics adopted 

in other previous papers: the horizontal distance of the pulse at 

pulse heights of 10% [17], 50% and 66% [18]. To fully express 

the pulse information, 25%, 33%, and 75% were added as 

feature parameters. In this study, 21 features extracted from a 

single PPG waveform are used as input to the neural network 

model, and the MIMIC database data was used for training data. 

As a results, absolute error 3.80±3.46(mmHg) and 

2.21±2.09(mmHg) for SBP and DBP can be achieved 

 

 
Fig. 3. Basic feature of PPG signal in time-domain 

C. Neural Networks And Transfer Learning 

With the development of technology, AI have been gaining 

attention from the public, among which Artificial Neural 

Network (ANN) is a mathematical model that imitates the 

structure and function of the human brain, being  used to 

perform regression and classification. The number of neuron 

features that can be trained increases as the computing speed 

and performance of the graphics chip increase, allowing the 

neural network model to achieve better learning results. 

The amount of training data is always the key to deciding 

whether a model is good or bad, but not all data acquisition 

methods are simple. Especially in the medical field, it is not 

easy to collect each piece of data. To solve these problems, 

some researchers have developed transfer learning methods as 

shown in Figure 4. Transfer learning is a special area of research 

in machine learning, and its research is based on the idea so that 

when humans encounter a new problem, they can solve the new 

problem faster and more efficiently based on their previous 

experience and knowledge, which is a process of transferring 

knowledge. Therefore, as long as a model with the same or 

related task as the neural network model to be trained can be 

found, it can be used as the source domain model and the target 

domain model can be trained by transfer learning, instead of 

collecting enough data, labeling data and training the model on 



4 
 
 

 

the target domain from scratch, which greatly saves the time of 

data collection. 

In this paper, due to the limited amount of data that can be 

collected using the MW-PPG sensor, the results of neural 

network model training are usually unsatisfactory, so the 

MIMIC public database data are used as the training data to 

train neural network with source domain knowledge. The 

source domain neural network model is used as the initial model 

to train with the collected data from the MW-PPG sensor. 

 

 
Fig. 4. Transfer learning method 
 

III. PROPOSED ALGORITHM FOR MW-PPG BLOOD 

PRESSURE MEASUREMENT 

A. Pre-processing of the Signal 

Before the feature capture, there are many noises generated 

in the circuit operation such as thermal noise, white noise, shot 

noise, etc. Generally, the frequency of heartbeat is between 60 

and 100 (bpm), so it can be seen that the frequency range of the 

PPG signal is about 0.5~7Hz [15], as shown in Figure 5. To 

obtain the PPG sensing signal without noise, the raw PPG 

sensing signal y at time t is filtered by a bandpass filter to 

remove the high and low-frequency noise (Fstop1:0.1708 Hz, 

Fstop2:6 Hz, Fpass1:0.9 Hz, Fpass2:7 Hz). The raw PPG 

sensing signal passed with a bandpass filter can be expressed as 

,i ty . 

 

 
Fig. 5. Data pre-processing method 

Next, the feature extraction technique in Section 2.2 is used 

to extract 21 feature parameters from the noise-filtered PPG 

sensing signal, including CP (Cardiac Period), SUT (Systolic 

upstroke Time), DT (Diastolic Time), 6 parameters of DW 

(Diastolic Width), 6 parameters of SW (Systolic Width) + DW, 

and 6 parameters of DW/SW, as shown in Figure 6. In addition, 

we further extend the method by including the 6 SW values as 

feature parameters for training. 

 
Fig. 6. PPG signal feature extraction 

 

Since [4] holds that the feature point of the PPG waveform is 

the time difference between the peak and the trough in a single 

pulse, the time difference under each pulse height 𝜎 emerges as 

the change of blood flow with the heartbeat. In this study, 

according to [4], the reference points of the PPG waveform are 

used as feature parameters, where each feature parameter is 

calculated by the following mathematical equations. 

Following equation (2) and (3), a single pulse of PPG signal 

can be expressed as 

0 0,i t t Ty → +
 (miss i),                              (4) 

where 0t  is the start time of a single pulse, T is the period of 

the PPG signal. In the i-th wavelength signal, the peak value 

,maxiy
 of the single pulse and the peak time point 

,maxit
 can be 

expressed as 

0 0

0 0

,max ,
[ , ]

,max ,
[ , ]

max

=arg max

i i t
t t t T

i i t
t t t T

y y

t y

 +

 +

=


  ,              (5) 

 

The time differences from peak to trough SUT and DT, and 

the time difference from the peak of a pulse wave to the peak of 

the pulse wave in the next cycle CP can be expressed as 

,max 0

0 ,max

,max ,max

-

( ) -

( 1) - ( )

i

i

i i

SUT t t

DT t T t

CP t T t T

 =


= +
 = +  ,        (6) 

 

In addition, SW  and DW  are the peak height of the pulse 

at each ratio  . The time difference from the peak can be 

expressed as 

,max ,

, ,max

SW =

DW =

i start

end i

t t

t t

 

 

−


− ,                       (7) 



5 
 
 

 

where ,startt   and ,endt   are the time points closest to the value 

of 
y  in the left and right sides of the wave peak. 

0 0

,max

0 0

,max

, ,
[ , ]

, ,
[ , ]

arg min

arg min

i

i

start i t
t t t T

t t

end i t
t t t T

t t

t y y

t y y

 

 

 +



 +



 = −




= −
 ,         (8) 

and 
y  is the peak height of the pulse at different ratios of  

,max

=0.1,0.25,0.33,0.5,0.66,0.75

iy y 



= 

 ,      (9) 

 

As a result, the 27 features   can be extracted from Eqs. 

(4) to (9). 

=[CP,SUT,DT,SW ,DW ,SW DW ,DW / SW ]      +  
 

B. Neural Network Model Training 

The 27 features are used as the input to the neural network 

model. In this neural network model framework, the mean 

square error (MSE) is used for the loss function, Adam is used 

for the optimizer, and a multilayer perceptron (MLP) 

framework with 6 hidden layers is used for training. In addition, 

for the target domain neural network model, the data 

augmentation method is  used to avoid the lack of data in the 

target domain and the excessive computation caused by training 

15 different wavelengths of neural network models. The sensor 

uses three types of LED light sources: green, red, and infrared, 

each of which captures five PPG signals of similar wavelengths 

as the same set of target domain data. The green wavelength 

bands 505nm, 510nm, 515nm, 520nm, and 525nm are 

considered the same group. The red wavelengths 620nm, 

625nm, 630nm, 635nm, and 640nm are considered the same 

group. Infrared wavelengths 930nm, 935nm, 940nm, 945nm, 

and 950nm are considered the same group. The parameters of 

Layers 1 and 2 are retrained, and the parameters of other layers 

are fixed. And then the data measured in the MIMIC database 

are transferred to the three separate green, red, and infrared 

target field neural network models using the layer transfer 

method. 

 

C. SNR-based Selected combining Algorithm 

In this study, the PPG signal wavelength with the best signal-

to-noise ratio (SNR) is selected as the wavelength band for 

blood pressure prediction by a selected combining algorithm. 

Since the selected combining algorithm has been widely used 

in the field of MIMO communication, this study applies this 

theory to select three types of green, red, and infrared neural 

network models. In this study, the SNR is calculated as follows: 

after converting the time domain signal to the frequency domain 

signal, the normal PPG signal frequency is 0.5Hz~7Hz, where 

freq.<7 Hz is defined as signal and freq.>7 Hz is defined as 

noise, and the SNR is calculated by dividing the signal power 

by the noise power. The strength of SNR means the stability of 

the waveform in the PPG signal, and the selection of the PPG 

signal wavelength with the best SNR means that the PPG signal 

with better signal quality can be used for prediction. 

Through the selected combining algorithm, the predicted 

blood pressure values of each wavelength can be merged into 

one predicted blood pressure value by the algorithm, and the 

mathematical equation can be expressed as 

i i

1...

( , ) (SBP ,DBP )i

i L

SCmethod SBP DBP 
=

= 
,         (10) 

1...
1, max( )

0,

i i
i M

i

snr snr

otherwise
 =

=
= 
 ,                   (11) 

where i  is the weight of the i-th wavelength, SNR is the 

signal-to-noise ratio, and the mathematical equation can be 

expressed as 
2

2
7i

i 2 2

i

7

( )
E[s (t)]

snr =
E[n (t)] ( )

i

f Hz

i

f Hz

s f

n f





=




,           (12) 

 

As shown in Figure 7, a 20-second MW-PPG sensing signal 

was collected, and the SNRs of red, green, and infrared light 

were 31.52(dB), 18.90(dB), and 26.57(dB), respectively. In 

addition, Figure 7(b) shows that the waveform of the red PPG 

sensor signal is clearer than those of the green and infrared 

signals. Given this, the SNR-based selected combining 

algorithm was used to select the blood pressure prediction 

results of the red PPG signal with better SNR. Besides, the 

mean absolute error (MAE) of the red PPG signal was 5.18 

(mmHg). Furthermore, the prediction errors of green and 

infrared light were MAE 15.25(mmHg) and MAE 8.47(mmHg), 

respectively, which further verified that the signal quality and 

the prediction error of blood pressure were positively correlated. 

 

 
(a) 

 
(b) 

 
(c) 
 

Fig. 7. A set of 20-second measurement signals of the micro MW-PPG 
measurement module, where (a) is the measurement signal with a 
wavelength from 505 nm to 525 nm, (b) is the measurement signal with 
a wavelength from 620 nm to 640 nm, and (c) is the measurement signal 
with a wavelength from 930 nm to 950 nm. 
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IV. EXPERIMENTAL RESULTS 

A. Experimental Data Collection and Test Results 

In this study, the micro multi-wavelength MW-PPG blood 

pressure monitor introduced in Section 2 is used for research 

sampling and data collection with 89 MW-PPG signals 

collected, and each MW-PPG signal contains 15 bands, 

including red band (505, 510, 515, 520, 525 nm), green band 

(620, 625, 630, 635, 640 nm), and infrared band (940, 945, 950, 

955, 960 nm). Given the difficulty of data collection for human 

experiments, five close wavelengths of the same light source 

are used to train the blood pressure measurement model for that 

color to realize the increase in the amount of data collection 

through the expansion of the data. In addition, each MW-PPG 

sensing signal is collected for 20 seconds for signal-to-noise 

ratio analysis. During the collection process, a commercially 

available cuff blood pressure monitor (OMRON HEM-7121) is 

used to measure the diastolic and systolic blood pressures of the 

subjects as ground truth. The systolic blood pressure range of 

the subjects in this study is 63-88 mmHg, and the diastolic 

blood pressure is 81-133 mmHg. 

The architecture of the blood pressure measurement model 

for each wavelength is shown in the following table. In order to 

avoid overfitting due to the small data set collected, migration 

learning was used to train the original model using a total of 

12,500 data from the public database (MIMIC III), as shown in 

Table 1. Then, Layer 6 and the output layer were used as the 

migration layer. The target model was trained with 70%, 15%, 

and 15% of the collected data as training data, validation data, 

and test data for micro multi-wavelength blood pressure 

monitors. 

 
TABLE I 

SW PPG BP ARCHITECTURE FOR EACH  

RED, GREEN, AND INFRARED PPG SIGNALS 

Layer Operator 

1 FC 27x256 + ReLU 

2 FC 256x256 + ReLU 
3 FC 256x256 + ReLU 

4 FC 256x256 + ReLU 

5 FC 256x128 + ReLU 
6 FC 128x64 + ReLU 

7 FC 64x2 
 

For the data testing, 89 data were collected and tested. Figure 

8 shows the mean absolute errors of the systolic and diastolic 

pressure measurements in different ways for each test data. The 

red, green, and blue lines are the measured MAE of the blood 

pressure when using red, green, and infrared red PPG signals, 

respectively, and the black line is the MAE when the PPG signal 

selected according to the proposed SNR of -based selective 

combining algorithm. It is worth noting that the wavelength of 

the minimum MAE varies from measurement data to 

measurement data, which is explained in Section 1. Therefore, 

the wavelength of PPG signal with optimal SNR also varies for 

different measurements. In terms of systolic pressure, the MAE 

was 6.7(mmHg), 7.2(mmHg), and 6.47(mmHg) for red, green, 

and infrared light, respectively. If the light source with the 

lowest MAE is selected for each measurement, the average 

MAE can reach 5.1(mmHg). On the other hand, 6.13(mmHg) 

MAE can be achieved by using the selected combining 

algorithm proposed in this study, which can reduce the error by 

9.2%, 17.4%, and 5.5% compared to green light, infrared light, 

and red light, respectively. Furthermore, for diastolic blood 

pressure, the MAE 4.79(mmHg), 4.98(mmHg), and 

4.54(mmHg) for the infrared, green, and red lights are achieved, 

respectively. If the light source with the lowest MAE is selected 

for each measurement, the average MAE can reach 

3.61(mmHg). Compared to that, the 4.53(mmHg) MAE can be 

achieved by using the selected combnining algorithm proposed 

in this study, which can reduce the error by 5.7%, 9.9%, and 

0.2% compared to green, red, and infrared lights respectively. 

It can be seen that although the selected combining algorithm 

can not always select the wavelength with lowest MAE, while 

based on the SNR as reference, we can dynamically select the 

wavelength for blood pressure measurement which is not the 

worst. As a result, compared to using the green PPG signal for 

the blood pressure measurements, the averaged MAE of 

systolic and diastolic pressures can be reduced up to 5% when 

the proposed SNR-based selected combining algorithm is used 

 

 
(a) 
 

 
(b) 
 
Fig. 8. MAE of (a) SBP and (b) DBP for 89 measurements with the use 
of red, green, and IR lights and the proposed SNR-based selected 
merged PPG signals. 

 

B. Clinical Test Results 

In this study, the developed micro MW-PPG sensing device 

was further tested on ten subjects in the clinical setting, as 

shown in Figure 9, where (a) and (b) show the systolic and 

diastolic MAE respectively measured by different light sources 

in the micro MW-PPG sensing device for the ten subjects. The 

red, green, blue, and black lines are the results of the MW-PPG 

sensing device using red, green, infrared, and SNR-based 

algorithms, respectively. It is noteworthy that the MAE of 

systolic and diastolic pressures are different for the same light 

source in the same subject. For example, the diastolic MAE of 

Subject 5 was 2.59(mmHg), 3.59(mmHg), and 4.73(mmHg) 

under red, green, and infrared light, respectively, and the 

systolic MAE was 6.71(mmHg), 5.85(mmHg), and 6.96(mmHg) 

under red, green, and infrared light, respectively. The MAE of 
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red light was found to be the best in diastolic blood pressure, 

better than green light at 1 (mmHg) and infrared light at 2.14 

(mmHg), while the MAE of green light was the best in diastolic 

blood pressure, better than red light at 0.86 (mmHg) and 

infrared light at 1.11 (mmHg). If the green light is selected for 

blood pressure measurement, although more accurate results 

can be obtained for diastolic blood pressure, there is a loss of 

1(mmHg) in accuracy for systolic blood pressure compared to 

red light in MAE. In contrast, if the red light is selected for 

blood pressure measurement, although the lowest measurement 

error is obtained in systolic pressure, there is a loss in accuracy 

of 0.86(mmHg) in diastolic pressure compared to green light in 

MAE. Therefore, as described in Section 1 of this paper, due to 

the differences in the nature of the skin of different subjects and 

various environmental variables, the light source suitable for 

systolic and diastolic blood pressure measurements will change 

accordingly. Therefore, the selection of an appropriate light 

source for blood pressure measurement is a major challenge for 

different subjects. 

Compared with the measurement method using only a single 

light source, the SNR-based selected combining algorithm 

proposed in this paper can select the best results in terms of the 

average MAE of systolic and diastolic pressures among 

different subjects. For example, for Subject 5, the average MAE 

of the red light source selected by the SNR-based selected 

combining algorithm was better than that of the green light 

(4.72 mmHg) and infrared light (5.85 mmHg). In addition, 

among all 10 subjects, the results of the proposed selected 

combining algorithm were used to select the lowest average 

MAE for 5 subjects and the next best average MAE for the 

remaining 5 subjects. The SNR-based selected combining 

algorithm by signal quality profiling does not guarantee the 

selection of the source with the lowest average MAE, but it can 

relatively select the source with 50% of the best and 50% of the 

second best MAE. 

 

 
(a) 

 

 
(b) 

 
Fig. 9. MAE of (a) SBP and (b) DBP for 10 clinical test measurements 
with the use of red, green, and IR lights and the proposed SNR-based 
selected merged PPG signals. 

V. CONCLUSIONS  

In this study, based on the micro MW-PPG measurement 

module developed in [13], 15 sets of wavelengths of MW-PPG 

signals were collected from three light sources, and the blood 

pressure measurement models were trained under each light 

source by transfer learning and deep learning algorithms. The 

SNR-based selected combining algorithm was used to select the 

light source with the best signal quality and to predict blood 

pressure by the corresponding neural network model. This 

method achieves an average error improvement of up to 5% in 

diastolic blood pressure. In addition to the training dataset and 

the test dataset, ten clinical tests were also collected to 

determine the quality of blood pressure. The average MAE of 

green, infrared, and red light was 5.75(mmHg), 6.09(mmHg), 

and 5.51(mmHg), respectively, and the SNR-based selected 

combining algorithm was further validated to reduce the 

prediction error through clinical testing. The MAE can reach 

5.33(mmHg) if the selected combining algorithm proposed in 

this paper is used, which can reduce the error by up to 12% 

compared to the single light source. 

All experiments and data collection were performed under 

the supervision of the Chang Gung Medical Foundation 

Institutional Review Board.  
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In this study, based on the micro MW-PPG measurement 

module developed in [13], 15 sets of wavelengths of MW-PPG 

signals were collected from three light sources, and the blood 

pressure measurement models were trained under each light 

source by transfer learning and deep learning algorithms. The 

SNR-based selected combining algorithm was used to select the 

light source with the best signal quality and to predict blood 

pressure by the corresponding neural network model. This 

method achieves an average error improvement of up to 5% in 

diastolic blood pressure. In addition to the training dataset and 

the test dataset, ten clinical tests were also collected to 

determine the quality of blood pressure. The average MAE of 

green, infrared, and red light was 5.75(mmHg), 6.09(mmHg), 

and 5.51(mmHg), respectively, and the SNR-based selected 

combining algorithm was further validated to reduce the 

prediction error through clinical testing. The MAE can reach 

5.33(mmHg) if the selected combining algorithm proposed in 

this paper is used, which can reduce the error by up to 12% 

compared to the single light source. 
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All experiments and data collection were performed under the 

supervision of the Chang Gung Medical Foundation Institutional 

Review Board.  
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